हिंदी

In the Given Figure, Ab = Bc = Dc And ∠Aob = 50°. (I) ∠Aoc (Ii) ∠Aod (Iii) ∠Bod (Iv) ∠Oac (V) ∠Oda - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, AB = BC = DC and ∠AOB = 50°.
(i) ∠AOC
(ii) ∠AOD
(iii) ∠BOD
(iv) ∠OAC
(v) ∠ODA

योग

उत्तर

Since arc AB and BC are equal.
So, ∠AOB = ∠BOC = 50°
Now,
∠AOC = ∠AOB + ∠BOC = 50° + 50° = 100°
As arc AB, arc BC and arc CD so, 
∠AOB = ∠BOC = ∠COD = 50°
∠AOD = ∠AOB + ∠BOC + ∠COD = 50° + 50° + 50° = 150°
Now, ∠BOD = ∠BOC + ∠COD 
∠BOD = 50° + 50° 
∠BOD = 100°

The triangle thus formed, ΔAOC is an isosceles triangle with OA = OC as they are radii of the same circle.
 Thus ∠OAC = ∠OCA as they are opposite angles of equal sides of an isosceles triangle.
The sum of all the angles of a triangle is 180°
So, ∠AOC + ∠OAC + ∠OCA = 180°
2∠OAC + 100° = 180°     as, ∠OAC = ∠OCA
2∠OAC = 180° - 100° 
2∠OAC = 80°
∠OAC = 40°

as ∠OCA = ∠OAC So,
∠OCA = ∠OAC = 40°

The triangle thus formed, ΔAOD is an isosceles triangle with OA = OD as they are radii of the same circle.
Thus, ∠OAD = ∠ODA as they are opposite angles of equal sides of an isosceles triangle.
The sum of all the angles of a triangle is 180°
So, ∠AOD + ∠OAD + ∠ODA = 180°
2∠OAD + 150° = 180°         as, ∠OAD = ∠ODA
2∠OAD = 180° - 150° 
∠OAD = 30°

as ∠OAD = ∠ODA    So,
∠OAD = ∠ODA  = 15°.

shaalaa.com
Arc and Chord Properties - If Two Arcs Subtend Equal Angles at the Center, They Are Equal, and Its Converse
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Circle - Exercise 17 (C) [पृष्ठ २२०]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 17 Circle
Exercise 17 (C) | Q 6 | पृष्ठ २२०

संबंधित प्रश्न

In the figure given alongside, AB and CD are straight lines through the centre O of a circle. If ∠AOC = 80° and ∠CDE = 40°, find the number of degrees in:

  1. ∠DCE,
  2. ∠ABC.


Two chords AB and CD intersect at P inside the circle. Prove that the sum of the angles subtended by the arcs AC and BD at the centre O is equal to twice the angle APC.


In the given figure, AB = AC = CD and ∠ADC = 38°. Calculate :

  1. Angle ABC
  2. Angle BEC


In the given figure, ABC is a triangle in which ∠BAC = 30°. Show that BC is equal to the radius of the circumcircle of the triangle ABC, whose centre is O.


The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle PRT = 20° and angle POQ = 100°. Calculate:

  1. angle QTR
  2. angle QRP
  3. angle QRS
  4. angle STR


The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle PRT = 20° and angle POQ = 100°. Calculate:

(ii) angle QRP


The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle PRT = 20° and angle POQ = 100°. Calculate:

(iii) angle QRS

 


The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle PRT = 20° and angle POQ = 100°. Calculate: 

(iv) angle STR


In the given figure, AB is a side of a regular hexagon and AC is a side of a regular eight-sided polygon.
Find:
(i) ∠AOB
(ii) ∠AOC
(iii) ∠BOC 
(iv) ∠OBC


C is a point on the minor arc AB of the circle, with centre O. Given ∠ACB = p°, ∠AOB = q°.
(i) Express q in terms of p.
(ii) Calculate p if ACBO is a parallelogram. 
(iii) If ACBO is a parallelogram, then find the value of q + p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×