हिंदी

In the given figure, ∠ABC = ∠ACB and BCBE. Show that ΔABE ∼ ΔDBC and AE || DC. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, `angle`ABC = `angle`ACB and `(BC)/(BE) = (BD)/(AC)`.

Show that `triangle`ABE ∼ `triangle`DBC and AE || DC.

योग

उत्तर

Given, `angle`ABC = `angle`ACB

∴ AB = AC   ...[∵ sides opposite to equal angles of a triangle are equal]

In `triangle`ABE and `triangle`DBC,

`angle`ABE = `angle`DCB    ...[Common]

`(BC)/(BE) = (BD)/(AC)`     ...[Given]

`(BC)/(BE) = (BD)/(AB)`     ...[∵ AB = AC]

So, `triangle`ABC ∼ `triangle`DBE

Now, `(BC)/(BE) = (BD)/(AB)`

Then, by the converse of the Basic Proportionality Theorem, if a line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.

∴ AE || AD

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (February) Basic Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×