Advertisements
Advertisements
प्रश्न
In the given figure PA, QB and RC are each perpendicular to AC. If AP = x, BQ = y and CR = z, then prove that `1/x + 1/z = 1/y`
योग
उत्तर
In ΔCAP and CBQ
∠CAP = ∠CBQ = 90°
∠PCA = ∠QCB (common angle)
So, ΔCAP ∼ ΔCBQ ...(By AA similarly Rule)
Hence, `(BQ)/(AP) = (BC)/(AC) ⇒ y/x = (BC)/(AC)` ...(i)
Now, in ΔACR and ΔABQ
∠ACR = ∠ABQ = 90°
∠QAB = ∠RAC ...(common angle)
So, ΔACR ∼ ΔABQ (By AA similarity Rule)
Hence, `(BQ)/(CR) = (AB)/(AC) ⇒ y/z = (AB)/(AC)` ...(ii)
On adding eq. (i) and (ii), we get
`y/x + y/z = (BC)/(AC) + (AB)/(AC)`
`y(1/x + 1/z) = (BC + AB)/(AC)`
`y(1/x + 1/z) = (AC)/(AC)`
⇒ `y(1/x + 1/z) = 1`
`1/x + 1/z = 1/y`
Hence Proved
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?