Advertisements
Advertisements
प्रश्न
In a trapezium ABCD, O is the point of intersection of AC and BD, AB || CD and AB = 2 × CD. If the area of ∆AOB = 84 cm2 . Find the area of ∆COD
योग
उत्तर
In ∆AOB and ∆COD, we have
∠OAB = ∠OCD (alt. int. ∠s)
∠OBA = ∠ODC (alt. int. ∠s)
∴ ∆AOB ~ ∆COD [By AA-similarity]
`\Rightarrow \frac{ar\ (\Delta AOB)}{ar\ (\Delta COD)}=(AB^2)/(CD^2)=(2CD)^2/(CD^2)` [∵ AB = 2 × CD]
`=>(4xxCD^2)/(CD^2)=4`
⇒ ar (∆COD) = 1/4 × ar (∆AOB)
`=>(1/4xx84)cm^2=21cm^2`
Hence, the area of ∆COD is 21 cm2 .
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?