Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`x^5 "e"^x`
उत्तर
`int x^5 "e"^(x^2) "d"x = int x x^4 "e"^(x^2) "d"x`
Let t = x2
`"dt"/("d"x)` = 2x
dt = 2x dx
x dx = `"dt"/2`
`int x x^4 "e"^(x^2) "d"x = int "t"^2 "e"^"t" ("dt"/2)`
= `1/2 int "udv"`
= `1/2 ["uv" - "u"^"I""v"_1 + "u"^"II""v"_2 .........]`
`1/2 int "t"^2 "e"^"t" "d"x = 1/2 [("t"^2) "e"^"t" - (2"t")("e"^"t") + 2("e"^"t")]`
= `1/2 "e"^"t" ["t"^2- 2"t" + 2]+ "c"`
= `1/2 "e"^(x^2) [(x^2)^2 - 2(x^2) + 2] + "c"`
=`1/2 "e"^(x^2) [x^4 - 2x^2 + 2] + "c"`
Successive derivatives | Repeated Integrals |
Take u = t2 uI = 2t uII = 2 uIII = 0 |
dv = `"e"^"t" "d"x` `int "dv" = int "e"^"t" "d"x` v = et v1 = `int "e"^"t" "dt"` = et v2 = `int "e"^"t" "dt"` = et |
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`(x^4 - x^2 + 2)/(x - 1)`
Integrate the following with respect to x.
`("a"^x - "e"^(xlog"b"))/("e"^(x log "a") "b"^x)`
Integrate the following with respect to x.
`1/(sin^2x cos^2x) ["Hint:" sin^2x + cos^2x = 1]`
Integrate the following with respect to x.
log x
Integrate the following with respect to x.
`1/(2x^2 + 6x - 8)`
Integrate the following with respect to x.
`sqrt(x^2 - 2)`
Choose the correct alternative:
`int 2^x "d"x` is
Choose the correct alternative:
`int[9/(x - 3) - 1/(x + 1)] "d"x` is
Choose the correct alternative:
If `int_0^1 f(x) "d"x = 1, int_0^1 x f(x) "d"x = "a"`, and `int_0^1 x^2 f(x) "d"x = "a"^2`, then `int_0^1 ("a" - x)^2 f(x) "d"x` is
Evaluate the following integral:
`int (x + 1)^2 log x "d"x`