Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x:
`sin^-1 ((2x)/(1 + x^2))`
उत्तर
I = `int sin^-1 ((2x)/(1 + x^2)) ""d"x`
Put x = tan θ
dx = sec2θ dθ
I = `int sin^-1 ((2tantheta)/(1 + tan^2theta)) sec^2theta "d"theta`
= `int sin^-1 (sin2theta) sec^2theta "d"theta`
= `int 2theta sec^2theta "d"theta`
= `2int (theta) (sec^2theta "d"theta)` ........[Rater Example 11.34]
I = `2[thetatantheta - int tan theta "d"theta]`
= `2theta tan theta - 2 log |sectheta| + "c"` ......`(sec theta = sqrt(1 + tan^2theta))`
`int sin^-1 ((2x)/(1 + x^2)) "d"x = 2x tan^-1x - 2log |sqrt(1 + x^2)| + "c"`
= `2[x tan^-1x - log |sqrt(1 + x^2)|] + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following functions with respect to x :
`(cos 2x)/(sin^2x cos^2x)`
Integrate the following functions with respect to x :
`(3 + 4cosx)/(sin^2x)`
Integrate the following functions with respect to x :
sin2 5x
Integrate the following functions with respect to x :
`(8^(1 + x) + 4^(1 - x))/2^x`
Integrate the following functions with respect to x :
`1/(sqrt(x + 3) - sqrt(x - 4))`
Integrate the following with respect to x :
`("cosec" x)/(log(tan x/2))`
Integrate the following with respect to x :
x(1 – x)17
Integrate the following with respect to x:
`"e"^("a"x) cos"b"x`
Integrate the following with respect to x:
`"e"^(-x) cos 2x`
Integrate the following with respect to x:
`"e"^x sec x(1 + tan x)`
Integrate the following with respect to x:
`"e"^x ((2 + sin 2x)/(1 + cos 2x))`
Integrate the following with respect to x:
`"e"^(tan^-1 x) ((1 + x + x^2)/(1 + x^2))`
Find the integrals of the following:
`1/(4 - x^2)`
Find the integrals of the following:
`1/(9x^2 - 4)`
Integrate the following functions with respect to x:
`sqrt((x + 1)^2 - 4)`
Choose the correct alternative:
`int (x^2 + cos^2x)/(x^2 + 1) "cosec"^2 x/("d"x)` is
Choose the correct alternative:
`int x^2 "e"^(x/2) "d"x` is