Advertisements
Advertisements
प्रश्न
Is it possible to have a polygon, whose sum of interior angles is 1030°.
योग
उत्तर
Let no. of. sides be = n
Sum of interior angles of polygon = 1030°
∴ (2n - 4) × 90° = 1030°
⇒ 2(n - 2) = `(1030°)/(90°)`
⇒ (n - 2) = `(1030°)/(2 xx 90°)`
⇒ (n - 2) = `103/18`
⇒ n = `103/18 + 2`
⇒ n = `139/18`
Which is not a whole number. Hence it is not possible to have a polygon, the sum of whose interior angles is 1030°.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?