Advertisements
Advertisements
प्रश्न
किसी सरल लोलक की गति छोटे कोण के सभी दोलनों के लिए सन्निकट सरल आवर्त गति होती है। बड़े कोणों के दोलनों के लिए एक अधिक गूढ विश्लेषण यह दर्शाता है कि का मान `2\pi \sqrt { \frac { "l" }{ "g" } }` से अधिक होता है। इस परिणाम को समझने के लिए किसी गुणात्मक कारण का चिंतन कीजिए।
उत्तर
सरल लोलक के लिए प्रत्यानयन बल F =- mg sin θ
यदि θ छोटा है तो sin θ ≈ θ = `\frac { x }{ "l" }`
अर्थात् यह गति सरल आवर्त होगी तथा आवर्तकाल `2\pi \sqrt { \frac { "l" }{ "g" } } `
यदि θ छोटा नहीं है तो हम sin θ ≈ θ नहीं ले सकेंगे तब गति सरल आवर्त नहीं रहेगी; अत: आवर्तकाल `2\pi \sqrt { \frac { "l" }{ "g" }` से बड़ा होगा।
APPEARS IN
संबंधित प्रश्न
चंद्रमा के पृष्ठ पर गुरुत्वीय त्वरण 1.7 ms-2 है। यदि किसी सरल लोलक का पृथ्वी के पृष्ठ पर आवर्तकाल 3.5 s है तो उसका चंद्रमा के पृष्ठ पर आवर्तकाल कितना होगा? (पृथ्वी के पृष्ठ पर g = 9.8 ms-2)
गुरुत्व बल के अंतर्गत मुक्त रूप से गिरते किसी केबिन में लगे सरल लोलक के दोलन की आवृत्ति क्या होती है?
किसी कार की छत से l लंबाई का कोई सरल लोलक, जिसके लोलक का द्रव्यमान M है, लटकाया गया है। कार R त्रिज्या की वृत्तीय पथ पर एकसमान चाल υ से गतिमान है। यदि लोलक त्रिज्य दिशा में अपनी साम्यावस्था की स्थिति के इधर-उधर छोटे दोलन करता है तो इसका आवर्तकाल क्या होगा?