हिंदी

Let (λ, 2, 1) be a point on the plane which passes through the point (4, –2, 2). If the plane is perpendicular to the line joining the points (–2, –21, 29) and (–1, –16, 23) -

Advertisements
Advertisements

प्रश्न

Let (λ, 2, 1) be a point on the plane which passes through the point (4, –2, 2). If the plane is perpendicular to the line joining the points (–2, –21, 29) and (–1, –16, 23), then `(λ/11)^2 - (4λ)/11 - 4` is equal to ______.

विकल्प

  • 6

  • 7

  • 8

  • 9

MCQ
रिक्त स्थान भरें

उत्तर

Let (λ, 2, 1) be a point on the plane which passes through the point (4, –2, 2). If the plane is perpendicular to the line joining the points (–2, –21, 29) and (–1, –16, 23), then `(λ/11)^2 - (4λ)/11 - 4` is equal to 8.

Explanation:

Since the plane is perpendicular to the line joining points

(–2, –21, 29) and (–1, –16, 23)

∴ Normal vector of plane is

`overlinen = hati + 5hatj - 6hatk`

Let A(λ, 2, 1)  and (4, –2, 2)

∵ `overline(AB) ⊥ overlinen`

`\implies` (λ – 4) + 5 × 4 – 6(–1) = 0

`\implies` λ – 4 + 20 + 6 = 0

`\implies` λ = – 22

Hence, `(λ/11)^2 - 4(λ/11) - 4` = 8

shaalaa.com
Different Forms of Equation of a Plane
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×