हिंदी

Let A = [0-220]. If M and N are two matrices given by M = ∑k=110A2k and N = ∑k=110A2k-1 then MN2 is ______. -

Advertisements
Advertisements

प्रश्न

Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.

विकल्प

  • a non-identity symmetric matrix

  • a skew-symmetric matrix

  • neither symmetric nor skew-symmetric matrix

  • an identify matrix

MCQ
रिक्त स्थान भरें

उत्तर

Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is a non-identity symmetric matrix.

Explanation:

Given matrix is

A = `[(0, -2),(2, 0)]`

A2 = `[(0, -2),(2, 0)][(0, -2),(2, 0)] = [(-4, 0),(0, -4)]` = –4I

A3 = –4A

A4 = (–4I) (–4I) = (–4)2I

A5 = (–4)2 A, A6 = (–4)3I

Take, M = `sum_(k = 1)^10 A^(2k)`

= A2 + A4 + .... + A20

= [–4 + (–4)2 + (–4)3 + ..... + (–4)10]I

It is GP. with a = –4, r = –4 and n = 10.

S10 = `((-4))/5(2)^10 - 1I`

`\implies` M is symmetric matrix

N = `sum_(k = 1)^10A^(2k - 1)`

= A + A3 + .... + A19

= A[1 + (–4) + (–4)2 + ... + (–4)9]

Similarly, N = `A[[1(-4)^10 - 1)/((-4 - 1))]`

= `(A[(2)^20 - 1])/5`

So, N is a skew-symmetric matrix

`\implies` N2 is a symmetric matrix

Therefore MN2 is a non-identity symmetric matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×