Advertisements
Advertisements
प्रश्न
Let A = `((1, -1, 0),(0, 1, -1),(0, 0, 1))` and B = 7A20 – 20A7 + 2I, where I is an identity matrix of order 3 × 3. If B = [bij], then b13 is equal to ______.
विकल्प
910
911
912
913
उत्तर
Let A = `((1, -1, 0),(0, 1, -1),(0, 0, 1))` and B = 7A20 – 20A7 + 2I, where I is an identity matrix of order 3 × 3. If B = [bij], then b13 is equal to 910.
Explanation:
Let A = I + C
Where C = `|(0, -1, 0),(0, 0, -1),(0, 0, 0)|`
C2 = `|(0, 0, 1),(0, 0, 0),(0, 0, 0)|`
C2 = `|(0, 0, 0),(0, 0, 0),(0, 0, 0)|`
So, A2 = (I + C)2 = I + 2C + C2
A3 = A2.A = I + 3C + 3C2
A4 = I + 4C + 6C2
A5 = I + 5C + 10C2
So, An = `"I" + "nC" + ("n"("n" - 1))/2"C"^2`
A20 = I + 20C + 190C2
∴ A7 = I + 7C + 21C2
∴ B = 7A20 – 20A7 + 2I
B = 7(I + 20C + 190C2) – 20(I + 7C + 21C2) + 2I
∴ B = –11I + 910C2
= `|(-11, 0, 910),(0, -11, 0),(0, 0, -11)|`
∴ b13 = 910