हिंदी

Let A = (1-1001-1001) and B = 7A20 – 20A7 + 2I, where I is an identity matrix of order 3 × 3. If B = [bij], then b13 is equal to ______. -

Advertisements
Advertisements

प्रश्न

Let A = `((1, -1, 0),(0, 1, -1),(0, 0, 1))` and B = 7A20 – 20A7 + 2I, where I is an identity matrix of order 3 × 3. If B = [bij], then b13 is equal to ______.

विकल्प

  • 910

  • 911

  • 912

  • 913

MCQ
रिक्त स्थान भरें

उत्तर

Let A = `((1, -1, 0),(0, 1, -1),(0, 0, 1))` and B = 7A20 – 20A7 + 2I, where I is an identity matrix of order 3 × 3. If B = [bij], then b13 is equal to 910.

Explanation:

Let A = I + C

Where C = `|(0, -1, 0),(0, 0, -1),(0, 0, 0)|`

C2 = `|(0, 0, 1),(0, 0, 0),(0, 0, 0)|`

C2 = `|(0, 0, 0),(0, 0, 0),(0, 0, 0)|`

So, A2 = (I + C)2 = I + 2C + C2

A3 = A2.A = I + 3C + 3C2

A4 = I + 4C + 6C2

A5 = I + 5C + 10C2

So, An = `"I" + "nC" + ("n"("n" - 1))/2"C"^2`

A20 = I + 20C + 190C2

∴ A7 = I + 7C + 21C2

∴ B = 7A20 – 20A7 + 2I

B = 7(I + 20C + 190C2) – 20(I + 7C + 21C2) + 2I

∴ B = –11I + 910C2

= `|(-11, 0, 910),(0, -11, 0),(0, 0, -11)|` 

∴ b13 = 910

shaalaa.com
Matrices
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×