Advertisements
Advertisements
प्रश्न
Let `overlinea = 2hati + hatj + hatk, overlineb = hati + 2hatj - hatk` and a unit vector `overlinec` be coplanar. If `overlinec` is perpendicular to `overlinea`, then `overlinec` = ______
विकल्प
`1/sqrt2(-hatj + hatk)`
`1/sqrt3(-hati - hatj - hatk)`
`1/sqrt5(hati - 2hatj)`
`1/sqrt3(hati - hatj - hatk)`
उत्तर
Let `overlinea = 2hati + hatj + hatk, overlineb = hati + 2hatj - hatk` and a unit vector `overlinec` be coplanar. If `overlinec` is perpendicular to `overlinea`, then `overlinec` = `underline(1/sqrt2(-hatj + hatk))`.
Explanation:
Since `overlinec` is coplanar with `overlinea` and `overlineb`.
`overlinec = xoverlinea + yoverlineb`
⇒ `overlinec = x(2hati + hatj + hatk) + y(hati + 2hatj - hatk)`
⇒ `overlinec = (2x + y)hati + (x + 2y)hatj + (x - y)hatk`
`overlinea ⊥ overlinec ⇒ overlinea . overlinec = 0`
⇒ 2(2x + y) + x + 2y + x - y = 0
⇒ y = -2x
`overlinec = -3xhatj + 3xhatk = 3x(-hatj + hatk)`
`|overlinec| = 1`
∴ `9x^2 + 9x^2 = 1`
⇒ `x = ±1/(3sqrt2) ⇒ overlinec = 1/sqrt2(-hatj + hatk)`