Advertisements
Advertisements
प्रश्न
Let a real valued function f(x) satisfying f(x + y) + f(x – y) = f(x)f(y) {f(0) ≠ 0} ∀ x, y ∈ R, then f(–2) – f(–1) + f(0) + f(1) – f(2) is equal to ______.
विकल्प
0.00
1.00
2.00
3.00
MCQ
रिक्त स्थान भरें
उत्तर
Let a real valued function f(x) satisfying f(x + y) + f(x – y) = f(x)f(y) {f(0) ≠ 0} ∀ x, y ∈ R, then f(–2) – f(–1) + f(0) + f(1) – f(2) is equal to 2.00.
Explanation:
Put x = y = 0
2f(0) = f2(0)
⇒ f(0) = 2
Now put x = 0
f(–y) + f(y) = f(0)f(y)
⇒ f(y) = f(–y)
⇒ f(–2) – f(–1) + f(0) + f(1) – f(2) = f(0) = 2
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?