हिंदी

Let a real valued function f(x) satisfying f(x + y) + f(x – y) = f(x)f(y) {f(0) ≠ 0} ∀ x, y ∈ R, then f(–2) – f(–1) + f(0) + f(1) – f(2) is equal to ______. -

Advertisements
Advertisements

प्रश्न

Let a real valued function f(x) satisfying f(x + y) + f(x – y) = f(x)f(y) {f(0) ≠ 0} ∀ x, y ∈ R, then f(–2) – f(–1) + f(0) + f(1) – f(2) is equal to ______.

विकल्प

  • 0.00

  • 1.00

  • 2.00

  • 3.00

MCQ
रिक्त स्थान भरें

उत्तर

Let a real valued function f(x) satisfying f(x + y) + f(x – y) = f(x)f(y) {f(0) ≠ 0} ∀ x, y ∈ R, then f(–2) – f(–1) + f(0) + f(1) – f(2) is equal to 2.00.

Explanation:

Put x = y = 0

2f(0) = f2(0)

⇒ f(0) = 2

Now put x = 0

f(–y) + f(y) = f(0)f(y)

⇒ f(y) = f(–y)

⇒ f(–2) – f(–1) + f(0) + f(1) – f(2) = f(0) = 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×