हिंदी

Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______. -

Advertisements
Advertisements

प्रश्न

Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.

विकल्प

  • reflexive, symmetric but not transitive

  • reflexive, transitive but not symmetric

  • reflexive but not symmetric and transitive

  • an equivalence relation

MCQ
रिक्त स्थान भरें

उत्तर

Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is an equivalence relation.

Explanation:

Set A = A1 ∪ A2 ∪ A3... ∪ Ax, where Ai ∩ Aj = Φ; i ≠ j, 1 ≤ i, j ≤ k

And relation R = {(x, y) : y ∈ Ai : iff x ∈Ai; 1 ≤ i ≤ k}

(1) Symmetric: If (x, y) ∈ R, then (y, x) ∈ R

∴ Given relation is symmetric.

(2) Reflexive: ∵ (a, a) ∈ R for all a ∈ Ai

∴ Given relation is reflexive

(3) Transitive: If (x, y) ∈ R and (y, z) ∈ R

⇒ y ∈ A; iff x ∈ Ai and z ∈ Ai iff y ∈ Ai

⇒ z ∈ A; iff x

⇒ Ai

⇒ (x, z) ∈ R

∴ Given relation is transitive.

Since, given relation is symmetric, reflexive and transitive

∴ It is an equivalence relation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×