Advertisements
Advertisements
प्रश्न
Let An be the sum of the first n terms of the geometric series `704 + 704/2 + 704/4 + 704/8 + ...` and Bn be the sum of the first n terms of the geometric series `1984 - 1984/2 + 1984/4 + 1984/8 + ...` If An = Bn, then the value ofn is (where n ∈ N).
विकल्प
4
5
6
7
MCQ
उत्तर
5
Explanation:
An = `704 + 704/2 + 704/4 + ...` to n terms
= `(704(1 - (1/2)^n))/(1 - 1/2) = 704 xx 2(1 - (1/2)^n)`
Bn = `1984 - 1984/2 + 1984/4 ....` to n terms
= `(1984(1 - ((-1)/2)^n))/(1 - ((-1)/2)) = 1984 xx 2/3(1 - ((-1)/2)^n)`
Now, An = Bn
⇒ `704 xx 2(1 - (1/2)^n)`
= `1984 xx 2/3 xx (1 - ((-1)/2)^n)`
⇒ 33 – 31 = `33(1/2)^n - 31((-1)/2)^n`
⇒ `2^(n + 1)` = 33 – 31(– 1)n
⇒ n = 5
shaalaa.com
Time Series Analysis
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?