हिंदी

Let An be the sum of the first n terms of the geometric series 704+7042+7044+7048+... and Bn be the sum of the first n terms of the geometric series 1984-19842+19844+19848+... If An = Bn -

Advertisements
Advertisements

प्रश्न

Let An be the sum of the first n terms of the geometric series `704 + 704/2 + 704/4 + 704/8 + ...` and Bn be the sum of the first n terms of the geometric series `1984 - 1984/2 + 1984/4 + 1984/8 + ...` If An = Bn, then the value ofn is (where n ∈ N).

विकल्प

  • 4

  • 5

  • 6

  • 7

MCQ

उत्तर

5

Explanation:

An = `704 + 704/2 + 704/4 + ...` to n terms

= `(704(1 - (1/2)^n))/(1 - 1/2) = 704 xx 2(1 - (1/2)^n)`

Bn = `1984 - 1984/2 + 1984/4 ....` to n terms

= `(1984(1 - ((-1)/2)^n))/(1 - ((-1)/2)) = 1984 xx 2/3(1 - ((-1)/2)^n)`

Now, An = Bn

⇒ `704 xx 2(1 - (1/2)^n)`

= `1984 xx 2/3 xx (1 - ((-1)/2)^n)`

⇒ 33 – 31 = `33(1/2)^n - 31((-1)/2)^n`

⇒ `2^(n + 1)` = 33 – 31(– 1)n 

⇒ n = 5

shaalaa.com
Time Series Analysis
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×