Advertisements
Advertisements
प्रश्न
Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to ______.
विकल्प
1
α
1 + α
1 + 2α
MCQ
रिक्त स्थान भरें
उत्तर
Let α be a root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 – α3033 is equal to 1.
Explanation:
Given: 1 + x2 + x4 = 0
⇒ x4 – x2 + x2 + x2 + x – x + 1 = 0
⇒ (x2 – x)(x2 + x) + (x2 – x) + (x2 + x + 1) = 0
⇒ (x2 – x) (x2 + x + 1) + (x2 + x + 1) = 0
⇒ (x2 + x + 1)(x2 – x + 1) = 0
⇒ x2 + x + 1 = 0 or x2 – x2 + 1 = 0
⇒ x = ω, ω2 or x = ω, ω2, where ω is a cube root of unity.
⇒ α = ω
Now, α1011 + α2022 – α3033 = ω1011 + ω2022 – ω3033
= (ω3)337 + (ω3)674 – (ω3)1011
= 1 + 1 – 1 ...{∵ ω3 = 1}
= 1
shaalaa.com
Cube Root of Unity
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?