हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Let → F Be a Force Acting on a Particle Having Position Vector → R . Let → γ Be the Torque of this Force About the Origin, Then - Physics

Advertisements
Advertisements

प्रश्न

Let \[\overrightarrow F\] be a force acting on a particle having position vector \[\overrightarrow r.\] Let \[\overrightarrow\Gamma\] be the torque of this force about the origin, then __________ .

विकल्प

  • \[\overrightarrow{r}  .  \overrightarrow{\Gamma}  = 0\text{ and }\overrightarrow{F}  .  \overrightarrow{\Gamma}  = 0\]

  • \[\overrightarrow{r}  .  \overrightarrow{\Gamma}  = 0\text{ but }\overrightarrow{F}  .  \overrightarrow{\Gamma}  \ne 0\]

  • \[\overrightarrow{r}  .  \overrightarrow{\Gamma}  \ne 0\text{ but }\overrightarrow{F}  .  \overrightarrow{\Gamma}  = 0\]

  • \[\overrightarrow{r}  .  \overrightarrow{\Gamma}  \ne 0\text{ and }\overrightarrow{F}  .  \overrightarrow{\Gamma}  \ne 0\]

MCQ
रिक्त स्थान भरें

उत्तर

\[\overrightarrow{r}  .  \overrightarrow{\Gamma}  = 0\text{ and }\overrightarrow{F}  .  \overrightarrow{\Gamma}  = 0\]

 

We have

\[\overrightarrow{\Gamma}  =  \overrightarrow{r}  \times  \overrightarrow{F}\]

Thus,

\[\overrightarrow{\Gamma}\] is perpendicular to \[\overrightarrow{r}\] and \[\overrightarrow{F}.\]

Therefore, we have

\[\overrightarrow{r}  .  \overrightarrow{\Gamma}  = 0\text{ and }\overrightarrow{F}  .  \overrightarrow{\Gamma}  = 0\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Rotational Mechanics - MCQ [पृष्ठ १९३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 10 Rotational Mechanics
MCQ | Q 8 | पृष्ठ १९३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×