Advertisements
Advertisements
प्रश्न
Let \[\overrightarrow F\] be a force acting on a particle having position vector \[\overrightarrow r.\] Let \[\overrightarrow\Gamma\] be the torque of this force about the origin, then __________ .
विकल्प
\[\overrightarrow{r} . \overrightarrow{\Gamma} = 0\text{ and }\overrightarrow{F} . \overrightarrow{\Gamma} = 0\]
\[\overrightarrow{r} . \overrightarrow{\Gamma} = 0\text{ but }\overrightarrow{F} . \overrightarrow{\Gamma} \ne 0\]
\[\overrightarrow{r} . \overrightarrow{\Gamma} \ne 0\text{ but }\overrightarrow{F} . \overrightarrow{\Gamma} = 0\]
\[\overrightarrow{r} . \overrightarrow{\Gamma} \ne 0\text{ and }\overrightarrow{F} . \overrightarrow{\Gamma} \ne 0\]
उत्तर
\[\overrightarrow{r} . \overrightarrow{\Gamma} = 0\text{ and }\overrightarrow{F} . \overrightarrow{\Gamma} = 0\]
We have
\[\overrightarrow{\Gamma} = \overrightarrow{r} \times \overrightarrow{F}\]
Thus,
\[\overrightarrow{\Gamma}\] is perpendicular to \[\overrightarrow{r}\] and \[\overrightarrow{F}.\]
Therefore, we have
\[\overrightarrow{r} . \overrightarrow{\Gamma} = 0\text{ and }\overrightarrow{F} . \overrightarrow{\Gamma} = 0\]
APPEARS IN
संबंधित प्रश्न
Show that a. (b × c) is equal in magnitude to the volume of the parallelepiped formed on the three vectors, a, b and c.
Let \[\overrightarrow A\] be a unit vector along the axis of rotation of a purely rotating body and \[\overrightarrow B\] be a unit vector along the velocity of a particle P of the body away from the axis. The value of \[\overrightarrow A.\overrightarrow B\] is ____________ .
Show that the area of the triangle contained between the vectors a and b is one half of the magnitude of a × b.