Advertisements
Advertisements
प्रश्न
Let f be the function defined by
f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`
विकल्प
The function is continuous for all values of x
The function is continuous only for x > 1
The function is continuous at x = 1
The function is not continuous at x = 1
MCQ
उत्तर
The function is not continuous at x = 1
Explanation:
For x < 1, f(x) = `(x^2 - 1)/(x^2 + 2x - 3) = (x + 1)/(x + 3)`
∴ `lim_(x rightarrow 1^-)` f(x) = `1/2`
For x > 1, f(x) = `(x^2 - 1)/(x^2 - 2x + 1) = (x + 1)/(x - 1)`
∴ `lim_(x rightarrow 1^+)` f(x) = ∞
∴ The function is not continuous at x = 1.
shaalaa.com
Continuous and Discontinuous Functions
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?