हिंदी

Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______. -

Advertisements
Advertisements

प्रश्न

Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.

विकल्प

  • (1, 4)

  • (4, ∞)

  • (2, 3)

  • (2, ∞)

MCQ
रिक्त स्थान भरें

उत्तर

Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is (4, ∞).

Explanation:

f’(x) = log1/3(log3(sin x + a)) < 0; x∈R

⇒ `log_3(sinx + a) > (1/3)^circ`

⇒ log3(sin x + a) > 1

⇒ (sin x + a) > 31

⇒ (sin x + a) > 3

Since, –1 ≤ sin x ≤ 1

⇒ –1 + a > 3 and 1 + a > 3

⇒ a > 4 and a > 2

⇒ a∈(4, ∞) and a∈(2, ∞)

Most appropriate answer is for all a∈(4, ∞)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×