हिंदी

Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of ππππ7(f(π7)+g(π7)g(5π14)+f(5π14)) is ______. -

Advertisements
Advertisements

प्रश्न

Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is ______.

विकल्प

  • 5.00

  • 6.00

  • 7.00

  • 8.00

MCQ
रिक्त स्थान भरें

उत्तर

Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is 7.00.

Explanation:

Use `π/7 + (5π)/14 = π/2` and `sin(π/2 - θ)` = cosθ

We know f(x) + g(x) = sinxcosx(cos2x + sin2x)

= sinxcosx

`f(π/7) + g(π/7) = sin  π/7. cos  π/7`

= `sin(π/2 - (5π)/14) cos(π/2 - (5π)/14)`

= `cos  (5π)/14 sin  (5π)/14`

= `g((5π)/14) + f((5π)/14)`

Now, `7[(f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14))]` = 7

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×