Advertisements
Advertisements
प्रश्न
Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is ______.
विकल्प
5.00
6.00
7.00
8.00
MCQ
रिक्त स्थान भरें
उत्तर
Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is 7.00.
Explanation:
Use `π/7 + (5π)/14 = π/2` and `sin(π/2 - θ)` = cosθ
We know f(x) + g(x) = sinxcosx(cos2x + sin2x)
= sinxcosx
`f(π/7) + g(π/7) = sin π/7. cos π/7`
= `sin(π/2 - (5π)/14) cos(π/2 - (5π)/14)`
= `cos (5π)/14 sin (5π)/14`
= `g((5π)/14) + f((5π)/14)`
Now, `7[(f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14))]` = 7
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?