हिंदी

Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. -

Advertisements
Advertisements

प्रश्न

Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______

विकल्प

  • is a polynomial of degree 6 in x.

  • is a polynomial of degree 3 in x.

  • is a polynomial of degree 2 in x.

  • does not depend on x.

MCQ
रिक्त स्थान भरें

उत्तर

Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) is a polynomial of degree 6 in x.

Explanation:

Let p1(x) = a1x2 + b1x + c1

P2(x) = a2x2 + b2x + c2 

and p3(x) = a3x2 + b3x + c3

where a1, a2, a3, b1, b2, b3, c1, c2, c3 are real numbers.

∴ A(x) = `[(a_1x^2 + b_1x + c_1, 2a_1x + b_1, 2a_1),(a_2x^2 + b_2x + c_2, 2a_2x + b_2, 2a_2),(a_3x^2 + b_3x + c_3, 2a_3x + b_3, 2a_3)]`

B(x) = `[(a_1x^2 + b_1x + c_1, a_2x^2 + b_2x + c_2, a_3x^2 + b_3x + c_3),(2a_1x + b_1, 2a_2x + b_2, 2a_3x + b_2),(2a_1, 2a_2, 2a_3)]`

`x[(a_1x^2 + b_1x + c_1, 2a_1x + b_1, 2a_1),(a_2x^2 + b_2x + c_2, 2a_2x + b_2, 2a_2),(a_3x^2 + b_3x + c_3, 2a_3x + b_3, 2a_3)]`

It is clear from the above multiplication, the degree of determinant of B(x) can not be less than 4.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×