Advertisements
Advertisements
प्रश्न
Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.
विकल्प
56
57
58
59
MCQ
रिक्त स्थान भरें
उत्तर
Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to 57.
Explanation:
Coefficient of middle term
`""^4C_2 xx β^2/6, -6β -""^6C_3 xx β^3/8` are in A.P.
2(–6β) = `""^4C_2 β^2/6 - ""^6C_3 β^3/8`
`β^2 - 5/2β^3` = –12β
β = `12/5` or β = –2
∴ β = `12/5`
Common difference
d = `72/5 - 144/25 = -504/25`
∴ `50 - (2d)/β^2` = 57
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?