हिंदी

Let the coefficients of x–1 and x–3 in the expansion of (2x15-1x15)15, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______. -

Advertisements
Advertisements

प्रश्न

Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.

विकल्प

  • 3

  • 4

  • 5

  • 6

MCQ
रिक्त स्थान भरें

उत्तर

Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to 5.

Explanation:

Given expansion is `(2x^(1/5) - 1/x^(1/2))^15`

Now, the general term of given expansion is

Tp+1 = `(-1)^p  ""^15C_p  2^(15-p)(x^(1/5))^(15-p).(1/x^(1/5))^p`

= `(-1)^p  ""^15C_p  2^(15 - p).x^((15-2p)/5)`

For coefficient of `x^-1, (15 - 2p)/5` = –1

⇒ p = 10

∴ m = 15C10 25

For coefficient of `x^-3, (15 - 2p)/5` = –3

⇒ p = 15

∴ n = –15C15 20 = –1

Now, mn2 = 15C10 25

⇒ mn2 = 15C5 25

15Cr 2r = 15C5 25

⇒  r = 5

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×