हिंदी

Let the position vectors of the points A, Band C be a→,b→ and c→ respectively. Let Q be the point of intersection of the medians of the triangle ΔABC. Then QA→+QB→+QC→ = -

Advertisements
Advertisements

प्रश्न

Let the position vectors of the points A, Band C be `veca, vecb` and `vecc` respectively. Let Q be the point of intersection of the medians of the triangle ΔABC. Then `vec(QA) + vec(QB) + vec(QC)` =

विकल्प

  • `(veca + vecb + vecc)/2`

  • `2veca + vecb + vecc`

  • `veca + vecb + vecc`

  • `vec(0)`

MCQ

उत्तर

`vec(0)`

Explanation:

Let the position vectors of the point A, B and C be `veca, vecb` and `vecc` respectively.

Since Q is the centroid therefore

Position vector of Q = `(veca + vecb + vecc)/3`

∴ `vec(QA) = veca - (veca + vecb + vecc)/3 = (2veca - vecb - vecc)/3`

Similarly, `vec(QB) = (2vecb - veca - vecc)/3` and `vec(QC) = (2vecc - veca - vecb)/3`

Consider, `vec(QA) + vec(QB) + vec(QC) = (2veca + 2vecb + 2vecc)/3 - ((2veca + 2vecb + 2vecc)/3) = vec(0)`

∴ `vec(QA) + vec(QB) + vec(QC) = vec(0)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×