हिंदी

Let X be the number of successes in 'n' independent Bernoulli trials with probability of 3 success p = 34. The least value of 'n' so that P(X ≥ 1) ≥ 0.9375 is ______. -

Advertisements
Advertisements

प्रश्न

Let X be the number of successes in 'n' independent Bernoulli trials with probability of 3 success p = `3/4`. The least value of 'n' so that P(X ≥ 1) ≥ 0.9375 is ______.

विकल्प

  • 2

  • 1

  • 4

  • 3

MCQ
रिक्त स्थान भरें

उत्तर

Let X be the number of successes in 'n' independent Bernoulli trials with probability of 3 success p = `3/4`. The least value of 'n' so that P(X ≥ 1) ≥ 0.9375 is 2.

Explanation:

We have, p = `3/4`, q = `1 - "p" = 1/4`

It is given that P(X ≥ 1) ≥ 0.9375

= 1 - P(X = 0) ≥ 0.9375

= 1 - nC(p0) (g)n-0 ≥ 0.9375

`= 1 - (1/4)^"n" ≥ 0.9375`

`= 1 - 0.9375 ≥ (1/4)^"n"`

`= 0.0625 ≥ (1/4)^"n"`

`= 625/10000 ≥ (1/4)^"n"`

`= 1/16 ≥ (1/4)^"n"`

= 16 ≥ 4n

⇒ n = 2

shaalaa.com
Bernoulli Trial
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×