Advertisements
Advertisements
प्रश्न
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
विकल्प
`f` is increasing at x0 if x1 < x2 in I ⇒ `f(x_1) ≤ f(x_2)`.
`f` is strictly increasing at x0 if x1 < x2 in I ⇒ `f(x_1) < f(x_2)`.
`f` is decreasing at x0 if x1 < x2 in I ⇒ `f(x_1) ≥ f(x_2)`.
All the above
MCQ
उत्तर
All the above
Explanation:
Let `f` be a function on [a, b] and differentiable in an open interval (a, b) then
(i) `f` is increasing on [a, b] if `f^'(x) > 0` for each x ∈ (a, b)
(ii) `f` is decreasing on [a, b] if `f^'(x) < 0` for each x ∈ (a, b)
(iii) `f` is constant on [a, b] if `f^'(x) = 0` for each x ∈ (a, b)
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?