हिंदी

Let x0 be a point in the domain of definition of a real valued function f and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true -

Advertisements
Advertisements

प्रश्न

Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.

विकल्प

  • `f` is increasing at x0 if x1 < x2 in I ⇒ `f(x_1) ≤ f(x_2)`.

  • `f` is strictly increasing at x0 if x1 < x2 in I ⇒ `f(x_1) < f(x_2)`.

  • `f` is decreasing at x0 if x1 < x2 in I ⇒ `f(x_1) ≥ f(x_2)`.

  • All the above

MCQ

उत्तर

All the above

Explanation:

Let `f` be a function on [a, b] and differentiable in an open interval (a, b) then

(i) `f` is increasing on [a, b] if `f^'(x) > 0` for each x ∈ (a, b)

(ii) `f` is decreasing on [a, b] if `f^'(x) < 0` for each x ∈ (a, b)

(iii) `f` is constant on [a, b] if `f^'(x) = 0` for each x ∈ (a, b)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×