Advertisements
Advertisements
प्रश्न
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.
विकल्प
1 + 4e3
1 + 4e6
1 – 4e6
1 – 4e3
MCQ
रिक्त स्थान भरें
उत्तर
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to `underlinebb(1 - 4e^6)`.
Explanation:
Given differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1
⇒ `e^xsqrt(1 - y^2)dx = (-y)/x dy`
⇒ `(ydy)/sqrt(1 - y^2) = -intxe^xdx`
⇒ `int (-ydy)/sqrt(1 - y^2) = intxe^xdx`
⇒ `sqrt(1 - y^2) = e^x(x - 1) + c`
Given x = 1, y = –1
⇒ 0 = 0 + c
⇒ c = 0
⇒ `sqrt(1 - y^2) = e^x(x - 1)`
At x = 3 ⇒ 1 – y2 = (e32)2 ⇒ y2 = 1 – 4e6
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?