Advertisements
Advertisements
प्रश्न
lf `overlinea` and `overlineb` be two unit vectors and θ is the angle between them, then `|overlinea - overlineb|` is equal to ______
विकल्प
sin`(theta/2)`
2sin`(theta/2)`
cos`(theta/2)`
2cos`(theta/2)`
MCQ
रिक्त स्थान भरें
उत्तर
lf `overlinea` and `overlineb` be two unit vectors and θ is the angle between them, then `|overlinea - overlineb|` is equal to `underline(2sin(theta/2))`.
Explanation:
`|overlinea - overlineb|^2 = (overlinea - overlineb).(overlinea - overlineb)`
= `overlinea.overlinea - overlinea.overlineb - b.overlinea + overlineb.overlineb`
= 1 - 2 `overlinea.overlineb + 1` ............`[∵ |overlinea| = |overlineb| = 1]`
= 2 - 2.1.1cos θ = 2(1 - cos θ)
= 2(2sin2`theta/2`)
= 4 sin2`theta/2`
∴ `|overlinea - overlineb| = 2 sin (theta/2)`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?