Advertisements
Advertisements
प्रश्न
lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.
विकल्प
`(x + sqrt(x^2 - 4))/2`
`x/(1 + x^2)`
`(x - sqrt(x^2 - 4))/2`
`1 + sqrt(x^2 - 4)`
उत्तर
lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to `underlinebb((x + sqrt(x^2 - 4))/2)`.
Explanation:
Let y = `x + 1/x`
`\implies` y = `(x^2 + 1)/x`
`\implies` xy = x2 + 1
`\implies` x2 – xy + 1 = 0
`\implies` x = `(y ± sqrt(y^2 - 4))/2`
`\implies` f–1(y) = `(y ± sqrt(y^2 - 4))/2`
∴ f–1(x) = `(x ± sqrt(x^2 - 4))/2`
Since, the range of the inverse function is [1, ∞), then we take f–1(x) = `(x + sqrt(x^2 - 4))/2`
If we consider, f–1(x) = `(x - sqrt(x^2 - 4))/2`, then f–1(x) > 1.
This is possible only, when (x – 2)2 > x2 – 4
`\implies` x2 + 4 – 4x > x2 – 4
`\implies` 8 > 4x
`\implies` x < 2, when x > 2