हिंदी

Lf f : [1, ∞) → [2, ∞) is given by f(x) = x+1x, then f–1(x) is equal to ______. -

Advertisements
Advertisements

प्रश्न

lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.

विकल्प

  • `(x + sqrt(x^2 - 4))/2`

  • `x/(1 + x^2)`

  • `(x - sqrt(x^2 - 4))/2`

  • `1 + sqrt(x^2 - 4)`

MCQ
रिक्त स्थान भरें

उत्तर

lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to `underlinebb((x + sqrt(x^2 - 4))/2)`.

Explanation:

Let y = `x + 1/x`

`\implies` y = `(x^2 + 1)/x`

`\implies` xy = x2 + 1

`\implies` x2 – xy + 1 = 0

`\implies` x = `(y ± sqrt(y^2 - 4))/2`

`\implies` f–1(y) = `(y ± sqrt(y^2 - 4))/2`

∴  f–1(x) = `(x ± sqrt(x^2 - 4))/2`

Since, the range of the inverse function is [1, ∞), then we take f–1(x) = `(x + sqrt(x^2 - 4))/2`

If we consider, f–1(x) = `(x - sqrt(x^2 - 4))/2`, then f–1(x) > 1.

This is possible only, when (x – 2)2 > x2 – 4

`\implies` x2 + 4 – 4x > x2 – 4

`\implies` 8 > 4x

`\implies` x < 2, when x > 2

shaalaa.com
Algebra of Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×