हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Light is Incident Normally on a Small Plane Surface. If the Surface is Rotated by an Angle of 30° About the Incident Light, Does the Illuminance of the Surface Increase, Decreases Or Remain Same? - Physics

Advertisements
Advertisements

प्रश्न

Light is incident normally on a small plane surface. If the surface is rotated by an angle of 30° about the incident light, does the illuminance of the surface increase, decreases or remain same? Does your answer change if the light did not fall normally on the surface?

टिप्पणी लिखिए

उत्तर

If the surface is rotated by 30°, the illuminance will decrease. This is because illuminance depends upon the cosine of the normal angle.

Yes, if the light does not fall normally on the surface initially, it may increase or decrease depending upon the former's angle. If the 30° rotation brings the table closer to the normal of the surface, the illuminance will increase; otherwise, it will decrease.

shaalaa.com
Light Process and Photometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Photometry - Short Answers [पृष्ठ ४५३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 22 Photometry
Short Answers | Q 3 | पृष्ठ ४५३

संबंधित प्रश्न

The luminous flux of a 1 W sodium vapour lamp is more than that of a 10 kW source of ultraviolet radiation. Comment.


Three light sources A, B and C emit equal amount of radiant energy per unit time. The wavelengths emitted by the three source are 450 nm, 555 nm and 700 nm respectively. The brightness sensed by an eye for the sources are XA, XB and XC respectively. Then, ________ .


An electric bulb is hanging over a table at a height of 1 m above it. The illuminance on the table directly below the bulb is 40 lux. The illuminance at a point on the table 1 m away from the first point will be about ___________ .


A photographic plate is placed directly in front of a small diffused source in the shape of a circular disc. It takes 12s to get a good exposure. If the source is rotated by 60° about one of its diameter, the time needed to get the same exposure will be ___________ .


Figure shows a glowing mercury tube. The intensities at point A, B and C are related as __________ .


The brightness-producing capacity of a source

(a) does not depend on its power

(b) does not depend on the wavelength emitted

(c) depends on its power

(d) depends on the wavelength emitted


Mark the correct options.

(a) The luminous efficiency of a monochromatic source is always greater than that of a white light source of same power.

(b) The luminous efficiency of a monochromatic source of wavelength 555 nm is always greater than that of a white light source of same power.

(c) The illuminating power of a monochromatic source of wavelength 555 nm is always greater than that of a white light source of same power.

(d) The illuminating power of a monochromatic source is always greater than that of a white light source of same power.


Mark out the correct options.

(a) Luminous flux and radiant flux have same dimensions.

(b) Luminous flux and luminous intensity have same dimensions.

(c) Radiant flux and power have same dimensions.

(d) Relative luminosity is a dimensionless quantity.


A source emits 45 joules of energy in 15 s. What is the radiant flux of the source?


A light source emits monochromatic light of  555 nwavelengthm. The source consumes 100 W of electric power and emits 35 W of radiant flux. Calculate the overall luminous efficiency.


A source emits 31.4 W of radiant flux distributed uniformly in all directions. The luminous efficiency is 60 lumen watt−1. What is the luminous intensity of the source?


A point source emitting 628 lumen of luminous flux uniformly in all directions is placed at the origin. Calculate the illuminance on a small area placed at (1.0 m, 0, 0) in such a way that the normal to the area makes an angle of 37° with the X-axis.


The illuminance of  a small area changes from 900 lumen m−2 to 400 lumen m−2 when it is shifted along its normal by 10 cm. Assuming that it is illuminated by a point source placed on the normal, find the distance between the source and the area in the original position.


Light from a point source falls on a small area placed perpendicular to the incident light. If the area is rotated about the incident light by an angle of 60°, by what fraction will the illuminance change?


A student is studying a book placed near the edge of a circular table of radius R. A point source of light is suspended directly above the centre of the table. What should be the height of the source above the table so as to produce maximum illuminance at the position of the book?


Light rays from a point object ______.


Light travels through a glass plate of thickness t and having a refractive index μ. If c is the velocity of light in vacuum, the time taken by the light to travel this thickness of glass is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×