हिंदी

Locus of centroid of the triangle whose vertices are (a cos t, a sin t),(b sin t, – b cos t) and (1, 0), where t is a parameter is ______. -

Advertisements
Advertisements

प्रश्न

Locus of centroid of the triangle whose vertices are (a cos t, a sin t),(b sin t, – b cos t) and (1, 0), where t is a parameter is ______.

विकल्प

  • (3x + 1)2 + (3y)2 = a2 – b2

  • (3x – 1)2 + (3y)2 = a2 – b2

  • (3x – 1)2 + (3y)2 = a2 + b2

  • (3x – 1)2 + (3y)2 = a2 + b2

MCQ
रिक्त स्थान भरें

उत्तर

Locus of centroid of the triangle whose vertices are (a cos t, a sin t),(b sin t, – b cos t) and (1, 0), where t is a parameter is `underlinebb((3x - 1)^2 + (3y)^2 = a^2 + b^2)`.

Explanation:

We know that centroid

(x, y) = `((x_1 + x_2 + x_3)/3, (y_1 + y_2 + y_3)/3)`

x = `(a cos t + b sin t + 1)/3`

⇒ a cos t + b sin t = 3x – 1

y = `(a sin t - b cos t)/3`

⇒ a sin t – b cos t = 3y

Squaring and adding,

(3x – 1)2 + (3y)2 = a2 + b2

shaalaa.com
Locus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×