Advertisements
Advertisements
प्रश्न
Making use of the cube root table, find the cube root
133100 .
उत्तर
We have: \[133100 = 1331 \times 100 \Rightarrow \sqrt[3]{133100} = \sqrt[3]{1331 \times 100} = 11 \times \sqrt[3]{100}\]
By cube root table, we have:
\[\sqrt[3]{100} = 4 . 642\]
∴ \[\sqrt[3]{133100} = 11 \times \sqrt[3]{100} = 11 \times 4 . 642 = 51 . 062\]
APPEARS IN
संबंधित प्रश्न
Find the cube root of the following number by the prime factorisation method.
10648
\[\sqrt[3]{1728} = 4 \times . . .\]
\[\sqrt[3]{480} = \sqrt[3]{3} \times 2 \times \sqrt[3]{. . .}\]
Evaluate:
Evaluate:
Making use of the cube root table, find the cube root
37800 .
Making use of the cube root table, find the cube root
0.86 .
Find the cube root of 216.
The cube root of 540 × 50 is ___________
The least number by which 72 be divided to make it a perfect cube is ______.