हिंदी

Minimise Z = 3x + 5y subject to the constraints:x + 2y ≥ 10x + y ≥ 63x + y ≥ 8x, y ≥ 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Minimise Z = 3x + 5y subject to the constraints:
x + 2y ≥ 10
x + y ≥ 6
3x + y ≥ 8
x, y ≥ 0

सारिणी
आलेख

उत्तर

We first draw the graphs of x + 2y = 10

x + y = 6

3x + y = 8.

The shaded region ABCD is the feasible region (R) determined by the above constraints.

The feasible region is unbounded.

Therefore, minimum of Z may or may not occur.

If it occurs, it will be on the corner point.

Corner Point Value of Z  
A (0, 8) 40  
B (1, 5) 28  
C (2, 4) 26 ← Smallest
D (10, 0) 30  


Let us draw the graph of 3x + 5y < 26 as shown in Figure by dotted line.

We see that the open half-plane determined by 3x + 5y < 26 and R do not have a point in common.

Thus, 26 is the minimum value of Z.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Linear Programming - Solved Examples [पृष्ठ २४७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 12 Linear Programming
Solved Examples | Q 6 | पृष्ठ २४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A manufacturer can produce two products, A and B, during a given time period. Each of these products requires four different manufacturing operations: grinding, turning, assembling and testing. The manufacturing requirements in hours per unit of products A and B are given below.

  A B
Grinding 1 2
Turning 3 1
Assembling 6 3
Testing 5 4


The available capacities of these operations in hours for the given time period are: grinding 30; turning 60, assembling 200; testing 200. The contribution to profit is Rs 20 for each unit of A and Rs 30 for each unit of B. The firm can sell all that it produces at the prevailing market price. Determine the optimum amount of A and B to produce during the given time period. Formulate this as a LPP.


Vitamins A and B are found in two different foods F1 and F2. One unit of food F1contains 2 units of vitamin A and 3 units of vitamin B. One unit of food F2 contains 4 units of vitamin A and 2 units of vitamin B. One unit of food F1 and F2 cost Rs 50 and 25 respectively. The minimum daily requirements for a person of vitamin A and B is 40 and 50 units respectively. Assuming that any thing in excess of daily minimum requirement of vitamin A and B is not harmful, find out the optimum mixture of food F1 and F2 at the minimum cost which meets the daily minimum requirement of vitamin A and B. Formulate this as a LPP.


An automobile manufacturer makes automobiles and trucks in a factory that is divided into two shops. Shop A, which performs the basic assembly operation, must work 5 man-days on each truck but only 2 man-days on each automobile. Shop B, which performs finishing operations, must work 3 man-days for each automobile or truck that it produces. Because of men and machine limitations, shop A has 180 man-days per week available while shop B has 135 man-days per week. If the manufacturer makes a profit of Rs 30000 on each truck and Rs 2000 on each automobile, how many of each should he produce to maximize his profit? Formulate this as a LPP.


A firm manufactures two products, each of which must be processed through two departments, 1 and 2. The hourly requirements per unit for each product in each department, the weekly capacities in each department, selling price per unit, labour cost per unit, and raw material cost per unit are summarized as follows:
 

  Product A Product B Weekly capacity
Department 1 3 2 130
Department 2 4 6 260
Selling price per unit Rs 25 Rs 30  
Labour cost per unit Rs 16 Rs 20  
Raw material cost per unit Rs 4 Rs 4  


The problem is to determine the number of units to produce each product so as to maximize total contribution to profit. Formulate this as a LPP.


The solution set of the inequation 2x + y > 5 is


Objective function of a LPP is


Which of the following sets are convex?


Let X1 and X2 are optimal solutions of a LPP, then


The optimal value of the objective function is attained at the points


The maximum value of Z = 4x + 3y subjected to the constraints 3x + 2y ≥ 160, 5x + 2y ≥ 200, x + 2y ≥ 80; xy ≥ 0 is


The objective function Z = 4x + 3y can be maximised subjected to the constraints 3x + 4y ≤ 24, 8x + 6y ≤ 48, x ≤ 5, y ≤ 6; xy ≥ 0


If the constraints in a linear programming problem are changed


Which of the following is not a convex set?


Choose the correct alternative:

How does a constraint, “A washing machine can hold up to 8 kilograms of cloths (X)” can be given?


State whether the following statement is True or False:

The half-plane represented by 3x + 4y ≥ 12 includes the point (4, 3)


A doctor prescribed 2 types of vitamin tablets, T1 and T2 for Mr. Dhawan. The tablet T1 contains 400 units of vitamin and T2 contains 250 units of vitamin. If his requirement of vitamin is at least 4000 units, then the inequation for his requirement will be ______


Ganesh owns a godown used to store electronic gadgets like refrigerator (x) and microwave (y). If the godown can accommodate at most 75 gadgets, then this can be expressed as a constraint by ______


Determine the minimum value of Z = 3x + 2y (if any), if the feasible region for an LPP is shown in Figue.


Solve the following LPP graphically:
Maximise Z = 2x + 3y, subject to x + y ≤ 4, x ≥ 0, y ≥ 0


The corner points of the feasible region determined by the system of linear constraints are (0, 10), (5, 5), (15, 15), (0, 20). Let Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z occurs at both the points (15, 15) and (0, 20) is ______.


Feasible region (shaded) for a LPP is shown in the Figure Minimum of Z = 4x + 3y occurs at the point ______.


The common region determined by all the linear constraints of a LPP is called the ______ region.


A type of problems which seek to maximise (or, minimise) profit (or cost) form a general class of problems called.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×