Advertisements
Advertisements
प्रश्न
Negation of the Boolean statement (p ∨ q) ⇒ ((∼r) ∨ p) is equivalent to ______.
विकल्प
p ∧ (∼q) ∧ r
(∼p) ∧ (∼q) ∧ r
(∼p) ∧ q ∧ r
p ∧ q ∧ (∼r)
MCQ
रिक्त स्थान भरें
उत्तर
Negation of the Boolean statement (p ∨ q) ⇒ ((∼r) ∨ p) is equivalent to (∼p) ∧ q ∧ r.
Explanation:
The given statement is (p ∨ q)
⇒ (∼r ∨ p) ≡ ∼(P ∨ q) ∨ (∼r ∨ p)
Now, let us take the negation of an above statement
≡ ∼[∼(P ∨ q) ∨ (∼r ∨ P)]
≡ ∼[∼(P ∨ q) ∧ ∼(∼r ∨ P)] ...{using De Margen’s law}
≡ (P ∨ q) ∧ (∼(∼r) ∧ ∼P) ...{∼(∼a) ≡ a}
≡ (P ∨ q) ∧ (r ∧ ∼P)
≡ [(P ∨ q) ∧ r] ∧ [(P ∨ q) ∧ (∼P) ...{using distributive law}
≡ [(P ∨ q) ∧ r] ∧ [∼P]
Now let us draw its venn diagram
[(P ∨ q) ∼r]
[(P ∨ q) ∼r] ∧ ∼P
Now let us draw Venn diagram of each option:
p ∧ (∼q) ∧ r
(∼p) ∧ (∼q) ∧ r
∼p ∧ q ∧ r
p ∧ q ∧ (∼r)
So, option (C) is correct.
shaalaa.com
Tautology, Contradiction, and Contingency
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?