हिंदी

निम्नलिखित प्रश्न को उपयुक्त यूक्लिड की अभिगृहीत का प्रयोग करते हुए, हल कीजिए : निम्नलिखित आकृति में, ∠1 = ∠3 और ∠2 = ∠4 है। दर्शाइए कि ∠A = ∠C है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित प्रश्न को उपयुक्त यूक्लिड की अभिगृहीत का प्रयोग करते हुए, हल कीजिए :

निम्नलिखित आकृति में, ∠1 = ∠3 और ∠2 = ∠4 है। दर्शाइए कि ∠A = ∠C है।

योग

उत्तर

दिया गया है, ∠1 = ∠3  ...(i)

और ∠2 = ∠4  ...(ii)

यूक्लिड की अभिगृहीत के अनुसार, यदि बराबर को बराबर में जोड़ा जाए, तो पूर्ण भी बराबर होते हैं।

समीकरण (i) और (ii) को जोड़ने पर, हम पाते हैं।

∠1 + ∠2 = ∠3 + ∠4

⇒ ∠A = ∠C

shaalaa.com
यूक्लिड की परिभाषाएँ, अभिगृहीत और अभिधारणाएँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: यूक्लिड की ज्यामिति का परिचय - प्रश्नावली 5.3 [पृष्ठ ५१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 5 यूक्लिड की ज्यामिति का परिचय
प्रश्नावली 5.3 | Q 8. | पृष्ठ ५१

संबंधित प्रश्न

निम्नलिखित कथन सत्य हैं या असत्य हैं? अपने उत्तर के लिए कारण दीजिए।

एक सांत रेखा दोनों ओर अनिश्चित रूप से बढ़ाई जा सकती है।


निम्नलिखित पद की परिभाषा दीजिए। क्या इनके लिए कुछ ऐसे पद हैं, जिन्हें परिभाषित करने की आवश्यकता है? वे क्या हैं और आप इन्हें कैसे परिभाषित कर पाएँगे?

लम्ब रेखाएँ


नीचे दी हुई दो अभिधरणाओं पर विचार कीजिए:

  1. दो भिन्न बिंदु A और B दिए रहने पर, एक तीसरा बिंदु C ऐसा विद्यमान है जो A और B के बीच स्थित होता है।
  2. यहाँ कम से कम ऐसे तीन बिंदु विद्यमान हैं कि वे एक रेखा पर स्थित नहीं हैं।

पाइथागोरस एक विद्यार्थी था :


यूक्लिड के कथन, सभी समकोण एक दूसरे के बराबर होते हैं, निम्नलिखित के रूप में दिया गया है :


एक पृष्ठ के किनारे वक्र होते हैं।


यूक्लिड की पाँचवीं अभिधारणा को अन्य अभिधारणाओं और अभिगृहीतों का प्रयोग करते हुए, सिद्ध करने के प्रयासों के फलस्वरूप अन्य अनेक ज्यामितियों की खोज हुई।


निम्नलिखित प्रश्न को उपयुक्त यूक्लिड की अभिगृहीत का प्रयोग करते हुए, हल कीजिए :

निम्नलिखित आकृति में, X और Y क्रमश : AC और BC के मध्य-बिंदु हैं तथा AX = CY है। दर्शाइए कि AC = BC है।


निम्नलिखित प्रश्न को उपयुक्त यूक्लिड की अभिगृहीत का प्रयोग करते हुए, हल कीजिए :

निम्नलिखित आकृति में, ∠ABC = ∠ACB और ∠3 = ∠4 है। दर्शाइए कि ∠1 = ∠2 है।


निम्नलिखित कथन को पढ़िए :

एक समबाहु त्रिभुज तीन रेखाखंडों से बना एक बहुभुज है जिनमें से दो रेखाखंड तीसरे रेखाखंड के बराबर हैं तथा इसका प्रत्येक कोण 60° का है।

इस परिभाषा में, उन पदों को परिभाषित कीजिए जिन्हें आप आवश्यक समझते हैं। क्या इसमें कोई अपरिभाषित पद है? क्या आप इसका औचित्य दे सकते हैं कि एक समबाहु त्रिभुज के सभी कोण और सभी भुजाएँ बराबर होती हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×