Advertisements
Advertisements
प्रश्न
Observe the following pattern \[1^2 = \frac{1}{6}\left[ 1 \times \left( 1 + 1 \right) \times \left( 2 \times 1 + 1 \right) \right]\]
\[ 1^2 + 2^2 = \frac{1}{6}\left[ 2 \times \left( 2 + 1 \right) \times \left( 2 \times 2 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 = \frac{1}{6}\left[ 3 \times \left( 3 + 1 \right) \times \left( 2 \times 3 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 + 4^2 = \frac{1}{6}\left[ 4 \times \left( 4 + 1 \right) \times \left( 2 \times 4 + 1 \right) \right]\] and find the values :
12 + 22 + 32 + 42 + ... + 102
उत्तर
Observing the six numbers on the RHS of the equalities:
The first equality, whose biggest number on the LHS is 1, has 1, 1, 1, 2, 1 and 1 as the six numbers.
The second equality, whose biggest number on the LHS is 2, has 2, 2, 1, 2, 2 and 1 as the six numbers.
The third equality, whose biggest number on the LHS is 3, has 3, 3, 1, 2, 3 and 1 as the six numbers.
The fourth equality, whose biggest number on the LHS is 4, has numbers 4, 4, 1, 2, 4 and 1 as the six numbers.
Note that the fourth number on the RHS is always 2 and the sixth number is always 1. The remaining numbers are equal to the biggest number on the LHS.
Hence, if the biggest number on the LHS is n, the six numbers on the RHS would be n, n, 1, 2, n and 1.
Using this property, we can calculate the sums for (i) and (ii) as follows:
\[ = 385\]
APPEARS IN
संबंधित प्रश्न
Find the square of the given number.
71
Write a Pythagorean triplet whose one member is 18.
What will be the units digit of the square of the following number?
78367
Observe the following pattern
22 − 12 = 2 + 1
32 − 22 = 3 + 2
42 − 32 = 4 + 3
52 − 42 = 5 + 4
and find the value of
1112 − 1092
Observe the following pattern \[1^2 = \frac{1}{6}\left[ 1 \times \left( 1 + 1 \right) \times \left( 2 \times 1 + 1 \right) \right]\]
\[ 1^2 + 2^2 = \frac{1}{6}\left[ 2 \times \left( 2 + 1 \right) \times \left( 2 \times 2 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 = \frac{1}{6}\left[ 3 \times \left( 3 + 1 \right) \times \left( 2 \times 3 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 + 4^2 = \frac{1}{6}\left[ 4 \times \left( 4 + 1 \right) \times \left( 2 \times 4 + 1 \right) \right]\] and find the values :
52 + 62 + 72 + 82 + 92 + 102 + 112 + 122
Which of the following number square of even number?
324
Find the squares of the following numbers using diagonal method:
348
Find the square of the following number:
512
Find a Pythagorean triplet in which one member is 12.
There are ______ natural numbers between n2 and (n + 1)2