Advertisements
Advertisements
प्रश्न
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white
उत्तर
First Bag contains 5 white and 3 black balls
Total number of balls in the first bag 8 Second Bag contains 4 white and 6 black halls
Total number of balls in the second bag = 10
One ball is drawn from each bag.
P(getting both are white) = P(getting white ball from the first bag) × P(getting the white ball from the second bag)
= `(""^5"C"_1)/(""^5"C"_1) xx (""^4"C"_1)/(""^10"C"_1)`
= `5/8 xx 4/10`
= `1/4`
APPEARS IN
संबंधित प्रश्न
In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find
- P(A ∩ B)
- P(A|B)
- P(A ∪ B)
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A ∪ B)
Determine P(E|F).
A coin is tossed three times, where
E: at most two tails, F: at least one tail
A and B are two events such that P (A) ≠ 0. Find P (B|A), if A is a subset of B.
If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?
In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.
A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, first is white and second is black?
A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, one is white and other is black?
A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that exactly one of them will solve it?
The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If the oil had to be changed, what is the probability that a new oil filter is needed?
The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that one white and one black
A year is selected at random. What is the probability that it is a leap year which contains 53 Sundays
Let A and B be two events. If P(A) = 0.2, P(B) = 0.4, P(A ∪ B) = 0.6, then P(A|B) is equal to ______.
If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:
Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.
If for two events A and B, P(A – B) = `1/5` and P(A) = `3/5`, then `P(B/A)` is equal to ______.
If for any two events A and B, P(A) = `4/5` and P(A ∩ B) = `7/10`, then `P(B/A)` is equal to ______.