हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएसएसएलसी (अंग्रेजी माध्यम) कक्षा ९

Orthocentre and centroid of a triangle are A(−3, 5) and B(3, 3) respectively. If C is the circumcentre and AC is the diameter of this circle, then find the radius of the circle - Mathematics

Advertisements
Advertisements

प्रश्न

Orthocentre and centroid of a triangle are A(−3, 5) and B(3, 3) respectively. If C is the circumcentre and AC is the diameter of this circle, then find the radius of the circle

योग

उत्तर

Let PQR be any triangle orthocentre, centroid and circumcentre.

An orthocentre is (−3, 5)

B centroid is (3, 3)

C orthocentre is (a, 6)

Also `"AB"/"BC" = 2/1`

B divides AC in the ratio 2 : 1

A line divides internally in the ratio point P is `(("m"x_2 + "n"x_1)/("m" + "n"), ("m"y_2 + "n"y_1)/("m" + "n"))`

m = 2

x1 = 3

y1 = 5

and

n = 1

x2 = a

y2 = b

∴ The point B `((2"a" - 3)/(2 + 1), (2"b" + 5)/(2 + 1))`

(3, 3) = `((2"a" - 3)/3, (2"b" + 5)/3)`

`(2"a" - 3)/3` = 3

2a – 3 = 9

2a = 9 + 3

2a = 12

a = `12/2` = 6

and 

`(2"b" + 5)/3`

2b + 5 = 9

2b = 9 – 5

2b = 4

b = `4/2` = 2

∴ Orthocentre C is (6, 2)

Diameter AC = `sqrt((6 + 3)^2 + (2 - 5)^2`

= `sqrt(9^2 + (-3)^2`

= `sqrt(81 + 9)`

= `sqrt(90)`

= `3sqrt(10)`

Radius = `(3sqrt(10))/2`

Radius = `3/2sqrt(10)`

or 

`3 xx sqrt(10/4) = 3sqrt(5/2)` units

shaalaa.com
The Coordinates of the Centroid
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Coordinate Geometry - Exercise 5.5 [पृष्ठ २१७]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 9 TN Board
अध्याय 5 Coordinate Geometry
Exercise 5.5 | Q 5 | पृष्ठ २१७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×