हिंदी

Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ (Figure). Show that AC and PQ bisect each other. - Mathematics

Advertisements
Advertisements

प्रश्न

Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ (Figure). Show that AC and PQ bisect each other.

योग

उत्तर

Given: ABCD is a parallelogram and AP = CQ

To show: AC and PQ bisect each other.


Proof: In ΔAMP and ΔCMQ,

∠MAP = ∠MCQ   ...[Alternate interior angles]

AP = CQ   ...[Given]

And ∠APM = ∠CQM   ...[Alternate interior angles]

∴ ΔAMP ≅ ΔCMQ  ...[By ASA congruence rule]

⇒ AM = CM   ...[By CPCT rule]

And PM = MQ   ...[By CPCT rule]

Hence, AC and PQ bisect each other.

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Quadrilaterals - Exercise 8.3 [पृष्ठ ७९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
अध्याय 8 Quadrilaterals
Exercise 8.3 | Q 9. | पृष्ठ ७९

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×