Advertisements
Advertisements
प्रश्न
प्रात्येक कार्डावर एक याप्रमाणे 0 ते 5 या पूर्णांक संख्या लिहून तयार केलेली सहा कार्डे खोक्यात ठेवली आहेत, तर खालील घटनेची संभाव्यता काढा.
काढलेल्या कार्डावरील संख्या 5 पेक्षा मोठी असणे.
उत्तर
नमुना अवकाश S = {0, 1, 2, 3, 4, 5}
∴ n(S) = 6
समजा, घटना B: कार्डावरील संख्या 5 पेक्षा मोठी असणे.
येथे, सर्वांत मोठी संख्या 5 आहे.
∴ घटना D ही अशक्य घटना आहे.
∴ D = { }
∴ n(D) = 0
∴ P(D) = `("n"("D"))/("n"("S")) = 0/6`
∴ P(D) = 0
APPEARS IN
संबंधित प्रश्न
दोन फासे एकाचवेळी टाकले असता खालील घटनांची संभाव्यता काढा.
i) घटना A: पृष्ठभागावरील अंकांची बेरीज कमीत कमी 10 असणे.
ii) घटना B: पृष्ठभागावरील अंकांची बेरीज 33 असणे.
एक नाणे व एक फासा एकाचवेळी फेकले असता, पुढील घटनांची संभाव्यता काढा.
i) घटना A: काटा व सम संख्या मिळणे.
ii) घटना B: छापा व विषम संख्या मिळणे.
दोन नाणी फेकली असता खालील घटनाची संभाव्यता काढा.
कमीत कमी एक छापा मिळणे.
एका पेटीत 15 तिकिटे आहेत. प्रत्येक तिकिटावर 1 ते 15 पैकी एक संख्या लिहिलेली आहे. त्या पेटीतून एक तिकीट यादृच्छिक पद्धतीने काढले, तर तिकिटावरची संख्या ५ च्या पटीत असणे, या घटनांची संभाव्यता काढा.
योग्य रीतीने पिसलेल्या 52 पत्त्यांच्या कॅटमधून एक पत्ता काढला, तर खालील घटनाची संभाव्यता काढा.
एक्का मिळणे.
प्रत्येक कार्डावर एक संख्या, याप्रमाणे 1 ते 40 या संख्या लिहिलेली 40 कार्डे एका पिशवीत आहेत. त्यांपैकी एक कार्ड उचलले असता त्या कार्डावरची संख्या 5 च्या पटीत असण्याची संभाव्यता ______ असेल.
जर n(A) = 2, P(A) = `1/5`, तर n(S) = ?
खालील कृती करा.
तुमच्या वर्गाचा एकूण पट n(S) = `square`
वर्गातील चश्मा वापरणार्या विद्यार्थ्यांची संख्या n(A) = `square`
सर्व विद्यार्थ्यांमधून चश्मा वापरणारा एक विद्यार्थी यादृच्छिक पद्धतीने निवडण्याची संभाव्यता P(A) = `square`
सर्व विद्यार्थ्यांमधून चश्मा न वापरणारा एक विद्यार्थी यादृच्छिक पद्धतीने निवडण्याची संभाव्यता P(B) = `square`
0, 1, 2, 3, 4 यांपैकी अंक घेऊन दोन अंकी संख्या तयार करायची आहे. अंकांची पुनरावृत्ती केलेली चालेल, तर खालील घटनाची संभाव्यता काढा.
ती संख्या मूळ असणे.
एक फासा टाकला असता वरच्या पृष्ठभागावर मूळ संख्या मिळण्याची संभाव्यता काढण्याची कृती पूर्ण करून लिहा.
कृती:
एक फासा टाकला असता नमुना अवकाश 'S' आहे.
S = `{square}`
∴ n(S) = 6
घटना A: वरच्या पृष्ठभागावर मूळ संख्या मिळणे.
A = `{square}`
∴ n(A) = 3
∴ P(A) = `square/("n"("S"))` ............(सूत्र)
∴ P(A) = `square`