Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
उत्तर
(i) We have,
`LHS=\frac{\sin \theta }{(1-\cos \theta )}\times \frac{(1+\cos \theta)}{(1+\cos \theta )}`
[Multiplying numerator and denominator by (1 + cosθ)]
`=\frac{sin\theta (1+cos\theta )}{1cos^{2}\theta }=\frac{\sin \theta (1+\cos \theta )}\(sin ^{2}\theta )`
[∵ 1 – cos2 θ = sin2 θ]
`=\frac{1+\cos \theta }{\sin \theta }=\frac{1}{\sin \theta }+\frac{\cos\theta }{\sin \theta }`
= cosecθ + cotθ = RHS
`[ \because \ \ \frac{1}{\sin \theta }=\cos ec\theta `
(ii) We have,
`LHS=\frac{\tan \theta +\sin \theta }{\tan \theta -\sin \theta }`
`\frac{\frac{\sin \theta }{\cos \theta }+\sin \theta }{\frac{\sin \theta}{\cos \theta }-\sin \theta }=\frac{\sin \theta ( \frac{1}{\cos\theta }+1)}{\sin \theta ( \frac{1}{\cos \theta }-1)} `
`\frac{\frac{1}{\cos \theta }+1}{\frac{1}{\cos \theta }-1}=\frac{\sec\theta +1}{\sec \theta -1}=RHS`