Advertisements
Advertisements
प्रश्न
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
उत्तर
Let I = `int_0^1 logx/sqrt(1 - x^2)dx`
Put x = sin θ,
∴ dx = cos θ dθ
When x = 0, θ = 0 and
When x = 1, θ = `π/2`
∴ I = `int_0^(π/2) (logsinθ)/sqrt(1 - sin^2θ) * cosθ dθ`
= `int_0^(π/2) (log sinθ)/cosθ * cosθ dθ`
I = `int log sin θ θ` ...(1)
= `int_0^(π/4) [log sin θ + log sin(π/2 - θ)]dθ` ...`{∵ int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx}`
I = `int_0^(pi/4) [log sin θ + log cos θ]dθ`
= `int_0^(pi/4) log(sin θ cos θ)dθ`
= `int_0^(pi/4) log((sin 2θ)/2)dθ`
= `int_0^(pi/4) log sin 2θ dθ - int_0^(pi/4) log 2 dθ`
In first integral,
Put 2θ = t,
∴ dθ = `(dt)/2`
When θ = 0, t = 0
and When θ = `π/4`, t = `π/2`
∴ I = `int_0^(π/2) log sin t * dt/2 - [θ log 2]_0^(pi/4)`
∴ I = `1/2 int_0^(π/2) log sin t dt - [π/4 log 2]`
∴ I = `1/2 int_0^(π/2) log sin θ dθ - π/4 log 2` ...(Definite integral is independent of variables.)
∴ I = `1/2 I - π/4 log 2` ...[From (1)]
∴ `1/2 I = -π/4 log 2`
∴ I = `-π/2 log 2`
= `π/2 log (1/2)`
Hence proved.