हिंदी

Prove that Cos − 1 Tanh ( Log X ) + = π – 2 ( X − X 3 3 + X 5 5 ... ... ... ) - Applied Mathematics 1

Advertisements
Advertisements

प्रश्न

Prove that `cos^-1tanh(log x)+ = π – 2(x-x^3/3+x^5/5.........)`

उत्तर

We know, tanhθ=` sinθ/coshθ`

=`((e^θ-e^-θ)/2)/((e^θ+e^-θ)/2)`

∴ `tanhθ=(e^θ-e^-θ)/(e^θ+e^-θ)`

Put θ=log x, 

∴ `tanh(logx)=(e^log-e^logx)/(e^log+e^-logx)`

=`(e^logx-e^(logx^-1))/(e^log+e^(logx^-1))`

=`(x-x^-1)/(x+x^-1)`

=`(x(1-x^-2))/(x(1+x^-2))` 

Let` y = cos^-1[tanh(log x)]` 

= `cos^-1[(1-x^-2)/(1+x^-2)]`

= `cos^-1[(1-(x^1)^-2)/(1+(x^-1)^2)]`

Put `x^-1=tanθ`

∴ `y = cos^-1 ((1-tan^2θ)/(1+tan^2θ))`

= `cos^-1(cos2θ)`
=` 2θ` 

=`2 tan^-1(1/x)`                          (From 1) 

= `2cot^-1x`

= `2(pi/2-tan^-1x)`

=`pi-2tan^-1x`

=`pi-2(x-x^3/3+x^5/5........)`

Hence, `cos^-1tanh(log x) = π – 2(x-x^3/3+x^5/5..........)`

shaalaa.com
Expansion of 𝑒^𝑥 , sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x), log(1+x), 𝑠𝑖𝑛−1 (𝑥),𝑐𝑜𝑠−1 (𝑥),𝑡𝑎𝑛−1 (𝑥)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (December) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Course
Use app×