Advertisements
Advertisements
प्रश्न
Prove that `cos^-1tanh(log x)+ = π – 2(x-x^3/3+x^5/5.........)`
उत्तर
We know, tanhθ=` sinθ/coshθ`
=`((e^θ-e^-θ)/2)/((e^θ+e^-θ)/2)`
∴ `tanhθ=(e^θ-e^-θ)/(e^θ+e^-θ)`
Put θ=log x,
∴ `tanh(logx)=(e^log-e^logx)/(e^log+e^-logx)`
=`(e^logx-e^(logx^-1))/(e^log+e^(logx^-1))`
=`(x-x^-1)/(x+x^-1)`
=`(x(1-x^-2))/(x(1+x^-2))`
Let` y = cos^-1[tanh(log x)]`
= `cos^-1[(1-x^-2)/(1+x^-2)]`
= `cos^-1[(1-(x^1)^-2)/(1+(x^-1)^2)]`
Put `x^-1=tanθ`
∴ `y = cos^-1 ((1-tan^2θ)/(1+tan^2θ))`
= `cos^-1(cos2θ)`
=` 2θ`
=`2 tan^-1(1/x)` (From 1)
= `2cot^-1x`
= `2(pi/2-tan^-1x)`
=`pi-2tan^-1x`
=`pi-2(x-x^3/3+x^5/5........)`
Hence, `cos^-1tanh(log x) = π – 2(x-x^3/3+x^5/5..........)`
APPEARS IN
संबंधित प्रश्न
Show that `sin(e^x-1)=x^1+x^2/2-(5x^4)/24+`...................
Using Newton Raphson method solve 3x – cosx – 1 = 0. Correct upto 3 decimal places.
Show that xcosecx = `1+x^2/6+(7x^4)/360+......`
If y= cos (msin_1 x).Prove that `(1-x^2)y_n+2-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0`
If coshx = secθ prove that (i) x = log(secθ+tanθ). (ii) `θ=pi/2tan^-1(e^-x)`
If` y= e^2x sin x/2 cos x/2 sin3x. "find" y_n`
Evaluate `Lim _(x→0) (cot x)^sinx.`
Prove that log `[sin(x+iy)/sin(x-iy)]=2tan^-1 (cot x tanhy)`
`"If" sin^4θcos^3θ = acosθ + bcos3θ + ccos5θ + dcos7θ "then find" a,b,c,d.`
Expand sec x by McLaurin’s theorem considering up to x4 term.