Advertisements
Advertisements
प्रश्न
Prove that `int_0^"a" "f(x)" "dx" = int_0^"a" "f"("a"-"x")"dx"` ,and hence evaluate `int_0^1 "x"^2(1 - "x")^"n""dx"`.
उत्तर
Prove that: `int_0^"a" "f(x)" "dx" = int_0^"a" "f"("a"-"x")"dx"`
Proof: Let
t = a - x
⇒ dt = -dx
When x = 0, t = a
When x = a, t = 0
Putting the value of x in LHS
∫a0fa-t-dt=-∫a0fa-tdt=∫0afa-tdt=∫0afa-xdx ∵∫abftdt=∫abfxdx=RHS">
`int_"a"^0 "f"("a"-"t")(-"dt")`
`=- int_"a"^0 "f"("a"-"t")(-"dt")`
`=int_0^"a""f"("a"-"t")(-"dt")`
`=int_0^"a""f"("a"-"x")(-"dx")` .........`(∵ int_"a"^"b" "f"("t")"dt" = int_"a"^"b" "f"("x")"dx")`
= RHS
Using this we can solve the given question as follows:
`int_0^1"x"^2(1-"x")^"n" "dx"`
` = int_0^1 (1-"x")^2 (1-(1-"x"))^"n" "dx"`
` = int_0^1 (1+"x"^2 -2"x")("x")^"n" "dx"`
` = int_0^1 ("x"^"n" + "x"^(2+"n")-2"x"^("n"+1))"dx"`
`=["x"^("n"+1)/("n"+1)+ "x"^("n"+3)/("n"+3) - 2 "x"^("n"+2)/("n"+2)]_0^1`
`= [1/("n"+1) + 1/("n"+3) - 2/("n"+2)]`
APPEARS IN
संबंधित प्रश्न
Find `int dx/(5 - 8x - x^2)`
Find `int (cos theta)/((4 + sin^2 theta)(5 - 4 cos^2 theta)) d theta`
Evaluate `int (cos 2x + 2sin^2x)/(cos^2x) dx`
Evaluate : \[\int\limits_0^\frac{\pi}{4} \tan x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x}dx\] .
Evaluate: `int ("sin 2x")/((1 + "sin x")(2 + "sin x")) "dx"`
Evaluate the following:
`int x/(sqrt(x) + 1) "d"x` (Hint: Put `sqrt(x)` = z)
Evaluate the following:
`int sqrt(("a" + x)/("a" - x)) "d"x`
Evaluate the following:
`int x^(1/2)/(1 + x^(3/4)) "d"x` (Hint: Put `sqrt(x)` = z4)
Evaluate:
`∫ log_10 "x dx"`
The value of the integral `int_(-1)^2 [x] dx` is
`int (sin^8x - cos^8x)/(1 - 2sin^2x cos^2x) dx` is equal to
`int_0^oo (dx)/((x^2 + a^2)(x^2 + b^2))` is
Evaluate: `int_0^(pi/2) cosx/(( cos x/2 + sin x/2)^3) dx`
If `d/dx f(x) = 2x + 3/x` and f(1) = 1, then f(x) is ______.