हिंदी

Prove that the Matrix 1 √ 3 [ 1 1 + I 1 1 − I − 1 ] is Unitary. - Applied Mathematics 1

Advertisements
Advertisements

प्रश्न

Prove that the matrix `1/sqrt3`  `[[ 1,1+i1],[1-i,-1]]` is unitary. 

उत्तर

Let   A= `1/sqrt3[[ 1,1+i],[1-i,-1]]`

The matrix is unitary when A.𝑨𝜽 = 𝑰 . 

∴ `A^θ=(\bar{A})^t=1/sqrt3[[ 1,1+i],[1-i,-1]]^t =1/sqrt3[[ 1,1+i],[1-i,-1]]`

∴ `A.A^θ=1/sqrt3[[ 1,1+i],[1-i,-1]]1/sqrt3[[ 1,1+i],[1-i,-1]]`

= `1/3 [[3,0],[0,3]]`

=`[[1,0],[0,1]]`

∴` A.A^θ=I`

The given matrix is unitary is proved.

shaalaa.com
.Circular Functions of Complex Number
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (June) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Course
Use app×