Advertisements
Advertisements
प्रश्न
Prove that `sin^(-1)(cosec theta)=pi/2+i.log(cot theta/2)`
उत्तर
we have to prove this `sin^(-1)(cosec theta) = pi/2+i.log (cot theta/2)`
`("cosec" theta) = sin[pi/2+i.log (cot theta/2)]`
R.H.S = `sin[pi/2+i.log(cot theta/2)]`
`cos[i.log(cot theta/2)]` ..........`{sin(pi/2+x)=cosx}`
`=cos hlog(cot theta/2)` ……….{ cos ix = cos hx }
`=1/2[e^(log(cot theta/2)+e6(-log(cot theta/2)]` ………..`{ cos hx = 1/2[e^x+e^(-x)] }`
`1/2[cot theta/2+1/(cot theta/2)]`
`1/2tan theta/2[1+cot^2 theta/2]`
`1/2tan theta/2[(sin^2 theta/2+cos^2 theta/2)/(sin^2 theta/2)]` ..............`{tantheta=sintheta/costheta=1/cottheta}`
`1/2xx(sin theta/2)/(cos theta/2)xx1/(sin^2 theta/2)`
`1/sintheta`
= cosecθ = L.H.S
`therefore sin^(-1)(cosec theta)=pi/2+i.log(cot theta/2)`
Hence Proved.