हिंदी

Prove that `Sqrt3+Sqrt5` is an Irrational Number. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `sqrt3+sqrt5` is an irrational number.

उत्तर

Given that `sqrt3+sqrt5` is an irrational number

Now we have to prove `sqrt3+sqrt5` is an irrational number 

Let `x=sqrt3+sqrt5` is a rational

Squaring on both sides

`rArrx^2=(sqrt3+sqrt5)^2`

`rArrx^2=(sqrt3)^2+(sqrt5)^2+2sqrt3xxsqrt5`

`rArrx^2=3+5+2sqrt15`

`rArrx^2=8+2sqrt15`

`rArr(x^2-8)/2=sqrt15`

Now  x is rational

⇒ x2 is rational

`rArr(x^2-8)/2` is rational

`rArr sqrt15` is rational

But, `sqrt15` is an irrational

Thus we arrive at contradiction that `sqrt3+sqrt5` is a rational which is wrong.

Hence `sqrt3+sqrt5` is an irrational.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Number Systems - Exercise 1.4 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 1 Number Systems
Exercise 1.4 | Q 14 | पृष्ठ ३२

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×