Advertisements
Advertisements
प्रश्न
Prove that V(aX) = a2V(X)
उत्तर
L.H.S = V(ax)
= E(ax)2 – [E(ax)]2
= a2E(x2) – [aE(x)]2
= a2E(x2) – a2E(x)]2
= a2E(x2) – E(x)2]
= a2v(x)
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(1/10, x = 2"," 5),(1/5, x = 0"," 1"," 3"," 4):}`
Choose the correct alternative:
Consider a game where the player tosses a six-sided fair die. If the face that comes up is 6, the player wins ₹ 36, otherwise he loses ₹ k2, where k is the face that comes up k = {1, 2, 3, 4, 5}. The expected amount to win at this game in ₹ is
Choose the correct alternative:
On a multiple-choice exam with 3 possible destructive for each of the 5 questions, the probability that a student will get 4 or more correct answers just by guessing is
Define Mathematical expectation in terms of discrete random variable
Choose the correct alternative:
Probability which explains x is equal to or less than a particular value is classified as
Choose the correct alternative:
Given E(X) = 5 and E(Y) = – 2, then E(X – Y) is
Choose the correct alternative:
If X is a discrete random variable and p(x) is the probability of X, then the expected value of this random variable is equal to
Choose the correct alternative:
`int_(-oo)^oo` f(x) dx is always equal to
Choose the correct alternative:
A listing of all the outcomes of an experiment and the probability associated with each outcome is called
Choose the correct alternative:
An expected value of a random variable is equal to it’s