Advertisements
Advertisements
प्रश्न
Prove the following:
cos(x + y).cos(x − y) = cos2y − sin2x
उत्तर
L.H.S. = cos(x + y) · cos (x – y)
= (cosx cosy – sinx siny) · (cosx cosy + sinx siny)
= cos2x cos2y – sin2x sin2y .....[∵ (a − b) (a + b) = a2 − b2]
= (1 – sin2x) cos2y – sin2x (1 – cos2y) ......[∵ sin2θ + cos2θ = 1]
= cos2y – sin2x cos2y – sin2x + sin2x cos2y
= cos2y – sin2x
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`cos (pi/2 - x) cos(pi/2 - y) - sin(pi/2 - x) sin(pi/2 - y)` = – cos (x + y)
Prove the following:
tan8θ − tan5θ − tan3θ = tan8θ · tan5θ · tan3θ
Prove the following:
tan50° = tan40° + 2 tan10°
Find sin 2x, cos 2x, tan 2x if secx = `(-13)/5, pi/2 < x < pi`
If tan x = `3/4, π < x < (3π)/2`, then the value of `cos x/2` is ______.
The value of tan `π/8` is ______.
The value of `(cotx - tanx)/(cot 2x)` is ______.