Advertisements
Advertisements
प्रश्न
Q 8
योग
उत्तर
Let r be the common ratio of this G.P.
Given : a, b, c, d are in G.P.
⇒ 1st = a,
2nd term = b = ar,
3rd term = c = ar2
4th term = d = ar3
Now, `(1/("b"^2+"c"^2))^2=[1/(("ar")^2+("ar"^2)^2)]^2`
`=[1/("a"^2"r"^2+"a"^2"r"^4)]^2`
`=1/("a"^2"r"^4)[1/(1+"r"^2)]^2`
`=1/("a"^2"r"^4)xx1/(1+"r"^2)^2`
And, `(1/(a^2+b^2))xx(1/(c^2+d^2))=[1/(a^2+(ar)^2)]xx[1/((ar^2)^2+(ar^3)^2)]`
`=[1/(a^2+a^2r^2)]xx[1/(a^2r^4+a^2r^6)]`
`=1/a^2(1/(1+r^2))xx1/(a^2r^4)(1/(1+r^2))`
`=1/(a^4r^4)xx1/(1+r^2)^2`
`=>(1/(b^2+c^2))^2(1/(a^2+b^2))xx(1/(c^2+d^2))`
Hence, `1/(a^2+b^2),1/(b^2+c^2) "and" 1/(c^2+d^2)` are in G.P.
shaalaa.com
Simple Applications - Geometric Progression
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?